
O P E R A T I O N S R E S E A R C H A N D D E C I S I O N S

No. 1 2010

Grażyna HOŁODNIK-JANCZURA*,
Izabela GOLIŃSKA**

DECISION SUPPORT SYSTEM FOR CHOOSING A MODEL
FOR A SOFTWARE DEVELOPMENT LIFE CYCLE

The aim of this paper is to present selected models of a Software Development Life Cycle as
a set of possible alternatives. The article also includes the characteristics of IT projects which are
used as the basis for selection criteria, according to which an appropriate model should be chosen.
These characteristics are divided into two groups; one of them deals with the product, the other one
deals with the project. Based on both a literature study and statistical surveys, a list of criteria is de-
rived, to be later applied in the process of developing a knowledge-based system. The rules and
search algorithms for selecting the best models are described by a flowchart. Finally, the method of
presentation and the interpretation of the results are discussed.

Keywords: algorithm, knowledge base, sequential model, evolutionary model, IT project, selection
criteria, risk, project complexity

1. Introduction

From an IT project manager’s point of view, choosing an appropriate model of
a Software Development Life Cycle (SDLC model) is a strategic issue, whereas on
a theoretical plane it is a very complex and weakly structured1 problem. To resolve

* Institute of Organization and Management, Faculty of Computer Science and Management, Wro-

cław University of Technology, ul. Smoluchowskiego 25, 50-372 Wrocław, e-mail: grazyna.holodnik-
janczura@pwr.wroc.pl

** A 2009 Faculty of Computer Science and Management graduate.
1 Structure is a feature of decision-making problems related to the possiblity of constructing

a straightforward, quantitative model for decision-making. In the case of weakly structured problems,
where many criteria are unknown at the beginning and only elements of theoretical knowledge can be
represented by numbers, it is difficult to establish a set of solutions and define decision-making proce-
dures [1, p. 11].

G. HOŁODNIK-JANCZURA, I. GOLIŃSKA62

this problem properly, one should employ not only pure knowledge, but also the expe-
rience and intuition of managers, aided by expert opinions. Thus, conclusions stem-
ming from investigating both sides of the issue were used to link the characteristics of
SDLC models with the characteristics of IT projects; hence the development of criteria
for model selection. Despite the fact that the bibliography on SDLC models and the
methodology of IT project management is extensive, the problem of choosing the most
suitable model for a specific project remains without a straightforward solution.
Therefore, bearing in mind the complex nature of the problem examined, one should
consider employing a knowledge-based system, in which the work of an expert is
aided by a software program that mimics his reasoning. Such systems belong to one of
the many subcategories of a broader group of management support systems. Among
other subcategories one can mention e.g. Decision Support Systems (DSS), expert
systems, or knowledge-based systems [5]. Since these systems share many of their
characteristics, the borders between particular categories are not clear-cut. Therefore,
the system proposed in this article is considered as an interactive expert system that
incorporates a knowledge base.

2. Models of an IT project life cycle

A software development life cycle is a process that includes mutually consistent
stages, which allow the complete and successful formation of an IT system and its
following use. This process covers the time span from the point of realizing the neces-
sity for creating a system, to the moment of its decommission. Early models dealt
mainly with the amount of work needed to create a successfully performing system;
elements such as planning, quality control and risk analysis were often omitted in their
design. However, models of such life cycles have evolved, so at present these ele-
ments are taken into consideration more and more frequently. As a result, integrated
models of an IT project life cycle are called models of a Software Development Life
Cycle.

2.1. Sequential models

The classic examples of sequential models are the waterfall model and the V-
model. Both of them include a description of the approach used, which derives from
the division of the software programming process into technologically sequential
stages. According to the rule saying that the output of one stage is the input of the

Decision support system for choosing model for a software development life cycle 63

following one, stages need to be completed one after another. In its less rigid version,
the waterfall model allows dividing each stage into two parts. The first part is con-
cerned with the technological work corresponding with that particular stage of devel-
opment, while the second consists of verification and validation. The goal of verifica-
tion is to confirm that the project under construction is consistent with the prior
specifications, while the validation part is aimed at assuring that an adequate product,
which here means a product desired by the client, is being built [7], [8].

There are many advantages to the waterfall model. It arranges tasks in an order that
facilitates the tracking and monitoring of progress. In its altered version that includes
verification and stage-by-stage confirmation, the model shares some features of qual-
ity and configuration management. Nonetheless, real-life projects rarely run in a se-
quential order, and even though one can introduce repetitions into the model, they are
considered unnatural and confusing. One of the difficulties that is hardest to overcome
when using a sequential model is the fact that at the beginning clients are usually un-
able to pinpoint all of their requirements. Yet, even if this were possible, alterations to
the requirements frequently occur at various stages of the construction process, espe-
cially if the system is advanced. Abiding by the rule of a sequence of actions also hin-
ders arriving at a solution to this problem. Another drawback of the sequential model
is its inability to present and consult the client with a working version of the software,
because it becomes available relatively late in the course of development. This may
lead to a situation in which a serious error in a project is discovered only at the end of
a cycle, which will substantially increase the total cost of the project. Additionally,
working in such a manner results in keeping certain members of the project team un-
occupied; the consequence here is again an increase in costs.

Despite all these deficiencies, sequential models are still utilized, mainly due to the
relative simplicity of managing a project that uses them. The waterfall model is per-
fectly applicable for small or middle-sized projects with specific and stable require-
ments [7, pp. 29–31].

2.2. Evolutionary development models

On one hand, the market pressure emphasizing the need to issue products faster
and faster, forces producers to release programs as early as possible, even if the only
version available is limited. On the other hand, it is widely known that requirements
undergo changes, even in the course of programming, and that while the require-
ments concerning the core of the system are exact from the start, the minor details
are usually unclear. Therefore, it seems beneficial to adopt an evolutionary ap-
proach, which should be understood as a model in which the statuses of the various
stages are intertwined in reference to the elements of the software under develop-

G. HOŁODNIK-JANCZURA, I. GOLIŃSKA64

ment. Using an evolutionary model, the issuing of a product proceeds in certain
stages; the functions of an initially limited first version are upgraded with each up-
date of the product [7, pp. 35–42].

The group of evolutionary models consists of numerous prototyping models and
their modifications, such as e.g. the spiral model and its variant the Win-Win model,
the parallel model, the incremental build model and the Component Object Model
(COM). The characteristics of a classic spiral model are presented below.

The spiral model

The spiral model of the software development process was defined by BOEHM [2].
The beginning of a project is placed at the center of the spiral; its development follows
the unwinding of the spiral. Each cycle represents one stage of a project under devel-
opment. The requirements in the center are not well defined, yet details are added with
each rotation of the spiral. For instance: the outcome of the first cycle is product speci-
fication, the outcome of the next one might be a prototype and the following outcomes
are constantly upgraded versions of the software designed. The cumulative cost of
a project rises with the length of the spiral. The model is considered evolutionary,
since it includes both recurrence, which is characteristic of a prototypical model, and
the regularity of a classical model. In addition, the scope of action of an evolutionary
model is extended by a risk management phase.

As a matter of fact, the spiral model is merely a package containing other models,
therefore no particular way of handling the sequence of phases is imposed. Even the
number of stages, usually between three and six recurring in every cycle2, is variable.
The keywords associated with the spiral model are: objective determination, planning
the project, quality control and risk management. All the abovementioned factors may
have a significant impact on successfully completing the project and meeting the
deadline.

The spiral model appears to be a realistic approach to large and complex projects.
The software designer has enough time to fully comprehend the clients’ requirements,
while the clients can supervise the construction of the product, seeing if what is being
built meets their expectations. However, there are certain shortcomings to this model.
First of all, it demands intense involvement of the staff in managing the project, in
particular in terms of risk management. A second considerable drawback is the limited
utility of this model in designing systems that are meant to function as simplified ver-

2 Boehm’s spiral includes four phases: the first one, in the upper left corner, involves determining

objectives, searching for possible solutions and their limitations, the second one (going clockwise) identi-
fies and resolves risk and assesses the alternative solutions; in the course of the third one the program is
developed (this area would overlap with the classical waterfall model to a large degree). The last, fourth,
phase includes either planning the next stage or iteration. Each full completion of a spiral cycle involves
complementary, cross-sectional activities, such as quality control or configuration management [2].

Decision support system for choosing model for a software development life cycle 65

sions with a lower standard of quality, when the deployment of the final product is
staggered in time [6, pp. 288–289].

2.3. Model selection problem

It is difficult to give a straightforward answer to the question: which model is the
best? Each of them is established upon different foundations, applicable to some types of
projects, but not to all of them. For instance, in the case of some models, such as the
waterfall and the Rapid Action Development (RAD) model, one presumes that all the
requirements concerning the software are available in the preliminary stages of the proj-
ect. Whereas in the case of the spiral, the Win-Win and the prototypical models, one
assumes that the initial specification might be simply incomplete and that it might not be
possible for the clients to state their requirements for the project, or that they may not be
fully understood by the system developer. Therefore, it is generally assumed that one
should familiarize oneself with the basic parameters characterizing a given project prior
selecting a suitable IT project SDLC model. Only after that can one begin deciding what
models would meet specific project and product requirements.

When it comes to projects that are aimed at designing life-critical systems, whose
main feature is high reliability, one should obviously apply a model ascertaining the
development of a reliable system. In the case of a pressing deadline, one should
probably opt for an RAD model. However, which model should one choose if there is
not too much time, but there are high demands concerning reliability? Therefore, the
model selection issue is becoming a multicriterion problem. Solving it is up to the
project manager, whose task is to select the factors describing the software, whose
analysis would be the most beneficial for the project.

3. Product and project characteristics as criteria
for model selection

The literature on IT project SDLC models includes many factors characterizing an
IT project that influence selection of an SDLC model. This paper will present the best
known of these, taking contemporary knowledge as a reference point that aids the
creation of a list of criteria for developing a computer-aided DSS for model selection.
The criteria were divided into two groups: product, and project criteria. The criteria
concerning software, in other words: the product group, include: the type of informa-
tion system, the size and complexity of the software, system architecture, modularity

G. HOŁODNIK-JANCZURA, I. GOLIŃSKA66

and level of module integrity, the variability and clarity of user requirements, or gen-
erally speaking – the quality of software. The criteria concerning project management,
in other words: the project group, include basic project dimensions such as: planned
timetable and cumulative costs of the project, resource characteristics, project risk,
types of users according to computer skills and fluency with computer systems.

3.1. Product characteristics

Type of information system

Information systems used by various institutions and companies can be divided into
three categories [4, pp. 18–22]. The first category comprises commonly used systems
that facilitate organization. Their main objective is to help employers in fulfilling various
everyday tasks. Office software such as MS Word and MS Excel, or teamwork aiding
programs such as Lotus Notes and Novell Group Wise are examples of such systems.

The second category of information systems comprises so called domain systems.
This group can be further divided into two subgroups. The first of these consists of sys-
tems that are aimed at improving the efficiency of business processes in e.g. customer
service or financial management. Examples of such systems are specialized Fixed Assets
Management Systems (FAMS), or Customer Relationship Management (CRM). The
second subgroup consists of systems created to aid creative activities, e.g. design or deci-
sion support processes. Elements characteristic of this subcategory are highly-advanced
applications, such as systems meant for industrial designers and architects (Computer
Aided Design, CAD), or systems aiding technological planning processes, designed for
industrial engineers (Computer Aided Process Planning, CAPP).

The third category of systems is constituted by integrated management systems. This
branch of systems is being steadily introduced into the field of applications that integrate
the various levels on which companies function. The most advanced of such systems
also cover strategic issues at the functional level of an organization. The best known
examples are ERP3 integrated management systems, such as the SAP4 software family,
Oracle Applications, IFS Applications5. Due to the large size of both such integrated

3 Enterprise Resource Planning (ERP) is a term describing a class of integrated IT systems. Systems

of this kind aid managing a company in the fields of e.g. finances, accounting, HR, wages, supplies,
production planning.

4 Systems Applications and Products in Data Processing (SAP), a company founded in 1972, is
a world-renowned leader in software providers, developing systems for businesses working in various
sectors of the economy.

5 Industrial & Financial Systems Applications (IFS) are a set of integrated IT solutions, comprising
around 70 modules, eg. in finances, production, supply chain management, customer relationship man-
agement, project and resource management.

Decision support system for choosing model for a software development life cycle 67

systems and the companies to which they are applicable, implementing all the modules
at the same time could result in serious disruption in the functioning of the company.
Therefore, the implementation of such projects is usually achieved in stages.

To select an SDLC model for any of the categories characterized above, one
should take into consideration its characteristics. For instance, models with a clearly
distinguished maintenance stage seem to be the most appropriate for the first category,
while models which emphasize the management of change and iterative cycles seem to
suit the second category best. The third category seems to work best using models
combining the characteristics of the first two types with the additional possibility of
applying modular fragmentation in the design and implementation of software.

Software size and complexity

An important, though difficult activity to be done at the very beginning of an IT proj-
ect is software sizing. This problem is usually solved by the use of various assessment
methods based upon mathematical models, by brainstorming, or by the Delphi method.
Depending on the accuracy of the outcome, the assessment data serve as an approxima-
tion of the size of the planned software6. Research shows that there is a straightforward
relationship between software size and the amount of work needed for its development
[7, pp. 172–174]. Its exponential form points to the necessity of dividing large software
projects into small parts, to reduce their complexity and ease project management in
general. Therefore, the models that seem to be the most suitable in this case are incre-
mental or evolutionary models, or, in the case of software carrying out complex algo-
rithms, it would be a formal transformation or prototyping model.

Computer system modularity and the level
of module integrity and complexity

The possibility of designing a modular framework for computer systems definitely
simplifies work on an IT project. Problems related to the complexity of a computer sys-
tem are frequently resolved by dividing the project into smaller parts, which are to be
worked on by individual project teams. Nevertheless, one should bear in mind that the
number of modules should be optimal, i.e. not too big, since the bigger the number of
modules, the more difficult the final integration becomes7. The integration process tends
to be time consuming. However, the benefits of modularity are priceless, mainly because
the complexity of a large project is dispersed over smaller tasks, each tackled individually.

6 Amongst the most popular measurements are measures of length, e.g. Lines of Code (LOC), or

functionality measures such as Function Points (FP), Use Case Points (UCP), or Cosmic Function Point
(CFP), previously known as the COSMIC functional unit (Cfsu).

7 Another reason for this is the increasing number of problems in integrating the communicating
parts, since the number of connections between parts is n(n – 1)/2, where n is the number of parts.

G. HOŁODNIK-JANCZURA, I. GOLIŃSKA68

Quality standards

Quality is a combination of measurable features which determines the rating of
a particular product, usually by comparing it to certain established standards. Software
quality can be defined as “the property of meeting clearly stated requirements concern-
ing software development and the unspoken expectations for each type of professionally
designed software” [8, p. 202]. This definition underlines three significant aspects of
quality. Firstly, the basis for measuring quality should be clearly defined requirements –
if a product does not meet them, it is of poor quality. Secondly, software should be de-
veloped with regards to established standards. Lastly, quality software should not only
meet the overt requirements, but also unspoken expectations, such as the protecting
against the possible effects of program closure and data backup in such cases. Therefore,
in the act of selecting an SDLC model one should also take quality control into consid-
eration and check if it is ascribed to each stage of the cycle or not.

3.2. Project characteristics

Planned timetable and budget/cumulative cost of the project

The time frame and budget are the most basic characteristics of any project and, as
recently published research claims, the success of a project depends largely on them
[9]. With long-term projects involving high levels of investment it is necessary to pre-
pare a stage-by-stage plan for project realization. A meticulously constructed timetable
that incorporates milestones for a project definitely increases the chance of successful
closure. Nowadays, software is frequently developed within a prior stated time frame,
with the option of an extended deadline; this is characteristic of the incremental build
model. When full software implementation is not possible at the appointed time, the
most vital aspect of functionality is chosen. In such a situation, clients are able to put
this part of the computer system under their scrutiny and decide whether the project
should be continued or not. This usually means an increase in the time frame, which in
turn results in an increased budget.

Project resources

Under the term resources, one should differentiate between human and technical
resources. Human resources are the group of people who are narrowly specialized in
a designated stage of software development and who are able to implement the project
successfully. In this case, the group is called a project team, and includes (depending
on needs): management, analysts, software designers, computer programmers, soft-
ware testers, and specialists in the fields in question. At each stage of development,
depending on the SDLC model used, each member of the team works at a different

Decision support system for choosing model for a software development life cycle 69

intensity. Apart from a quantitative approach to human resources, it is important to
take into account such factors as experience in the implementation of similar projects
or in utilizing certain technologies. If a project team works with an unfamiliar tech-
nology, project risk increases, as well as the duration of the project in general, due to
the possible necessity of staff training or extended search for solutions to problems.

The second type of resources are composed of technical resources, which comprise
not only the necessary hardware, but also tools – software – together with access to the
chosen technology. Both the available and required level of resources can substantially
limit this choice or simply suggest the best model for the project e.g. RAD model –
large project team, COM (Component Object Model) – available components, the
prototypical model – CASE tools.

Project risk

Risk accompanies all IT projects. This notion concerns the possibility and probability
that something will go wrong. For an IT project, this basically means a lack of certainty
regarding the deadline and hindrances in the course of a project’s realization. Risk is char-
acterized by two markers: uncertainty, in the form of the threat of what might arise from
a future event and the loss incurred from a future event that turns out to be negative.

Risk cannot be entirely removed from IT projects, yet it can be successfully man-
aged. Research indicates the weakest elements of an IT project. Selecting an adequate
SDLC model significantly decreases risk levels. For instance, if a project team is as-
signed to design an innovative system and the client’s requirements are unclear, one
should choose a prototypical model, which at the initial stages helps to detect possible
difficulties that may hinder work later in the course of project development. Other
models, such as the spiral model, include risk analysis at each step of the project, and
thus they are of considerable use in the implementation of high-risk projects.

4. Expert opinions

To obtain data on the issue of model selection, surveys were sent to project man-
agers working in selected IT companies. Amongst other issues, the interviewees were
to answer the following questions: “What is the best way to select an SDLC model?”
and “What are the most vital criteria in selecting a model?” However, despite a couple
of interesting answers, the sample turned out to be too small to formulate any far-
reaching conclusions.

To sum up the poll results, one could state that the obtained answers provided con-
firmation for the theoretical plane of the issue under investigation. An analysis of the
basic project dimensions proved that delays in deadlines go hand in hand with delays

G. HOŁODNIK-JANCZURA, I. GOLIŃSKA70

in finances. Also, a significant regularity was noted, related to task prioritization. Ap-
parently, when used within an incremental build model, prioritization facilitates the
development of a computer system remarkably.

We also attempted to establish a list of potential factors that could influence the
selection of an SDLC model. The results show that in the case of a prototypical model
connected with RAD, the incremental build, or the Build-And-Fix model, the most
significant factors are the time frame expected for the completion of the project, and
user priorities, followed by the size and complexity of the project. The spiral model
proved to be successfully applicable not only to large and medium-sized projects, but
also to small ones. The theoretical arguments for selecting the RAD model, namely
time limitations, were also confirmed, while the incremental build model, which ap-
peared to be the most popular one, worked perfectly for larger projects characterized
by a more complex architecture. This last model gained favor with project managers
because it can be used by an inexperienced team, although they pointed out the incon-
venience deriving from the necessity of frequent meetings with the users.

5. The concept of a knowledge-based system

The goal of developing an expert system with the aid of artificial intelligence is to
come up with results that would help to establish which SDLC models are particularly
suitable for a particular IT project. In other words, obtaining one clear answer was not
the aim, but rather obtaining guidance in choosing from a known set of models. The
model selected should suit the characteristics of a given project the best. To make this
task possible to resolve, the characteristics of a project should correspond to the criteria
set out in the selection of model; the criteria should be stored in the knowledge-base of
the system. Then, to obtain information about a suitable model, the users of such a pro-
gram would have to determine the characteristics of their projects by answering a set of
questions asked by the system. The full functioning of the system can be depicted by
a hierarchy of windows in the interface of the application, as arranged in two panels: the
first accessible to the administrator, the second accessible to the decision maker.

From the user’s point of view, the system is accessible through a double-layered
structure (figure 1.). The first layer is to be used by an expert and serves as a tool for
parameterizing the system according to the models considered, criteria and management
of the question facility. It remains invisible to common users. Only the second layer, ena-
bling the choice of a model is accessible by decision makers. With the use of an appropri-
ate interface, decision makers can enter the known characteristics of their projects. Ob-
taining information from decision makers happens as a simple question-answer process.
A successful and apt selection of an SDLC model, which is the outcome of the system,
depends on appropriate definition of the expert, criterion layer. Separating the criterion

Decision support system for choosing model for a software development life cycle 71

layer from the question layer exempts the decision-maker from the necessity of identify-
ing various characteristics of models and of examining their influence on successful proj-
ect implementation. The wearisome stage of determining criteria and associating them
with questions is completed by an expert, who in this system is called the administrator.
The presence of a definable criterion layer offers ample opportunities for calibration of the
decision-making system. With the use of such a tool one can accurately render the de-
pendencies related to the selection of an SDLC model in real project development.

P1 P2 PN

K1 K3

K2

K4 K5 K6

…
Question layer
accessible by
the decision
maker

Criterion layer
accessible by
the administrator

Fig. 1. Abstract, layered division of the decision-making system

6. Knowledge-base

Containing all the information concerning SDLC models in a database that can be
accessed in the decision-making process is difficult, since it is not only defined by quan-
titative measures, but mainly by description. In order to resolve this problem, several
simplifications and assumptions were made to aid the design of a database and to make
the project clear and logical. This is of most importance when it comes to concluding the
process, since this is based upon the facts stored in the database. As a result, a base was
designed that contains knowledge about the links between the characteristics of models
and projects. This became the basis for the selection algorithm.

The database comprises of two parts. The first one stores the set of available models
and information about their features; exact values or ranges of values if necessary and text
values are ascribed to these features. The second part maintains the links between the
questions, answers and the conditions upon which the conclusion of the process works.

The initial version of the system included 11 models, as follows: the waterfall
model, the V-model, the prototypical model, the RAD model, the incremental build
model, the spiral model, the Win-Win model, the parallel model, the Component Ob-
ject Model (COM), the formal transformation model and the Build-And-Fix model.

G. HOŁODNIK-JANCZURA, I. GOLIŃSKA72

The application possesses an additional asset, which is storing the history of the
answers given by users and keeping a table of results for the models, which is updated
after each answer. Apart from being able to access the history of the answers, the users
are also able to return to the previous question whenever they want.

7. Application parameterizing –
permanent knowledge-base updating

Application parameterizing means filling the database with appropriate components.
In the initial version of the system, the list of components was based on both research in
the literature on the field and expert knowledge. The data entered can be browsed, de-
leted, edited, and updated. All changes (add, delete, edit) are automatically saved in the
system database. To do this, one has to open a module named Parameterizing – admin-
istrator panel. This part of the application is designed for expert users having consider-
able experience in IT project management. With the use of their practical and theoretical
knowledge, such users will be able to enrich and improve the existing database.

Fig. 2. The “Edit module parameters” window with an open “Edit” option
and a drop-down list of criteria

New models can be added by filling out a table in the upper part of the “Edit mod-
ule parameters” window (figure 2). Not only has each model to be characterized in

Decision support system for choosing model for a software development life cycle 73

detail, but also it is required to establish links between each of the models and the
selection criteria. The significance of a particular field should be highlighted as the
“fulfillment_level_parameter”. This is used to calculate the score assigned to each
model, which is vital in assessing the levels of significance of particular criteria to
a particular model. It was assumed that this field takes values from 1 to 100. Let us use
“team experience” as an example criterion. The text values assigned to it are “little,”
“medium,” and “large,” e.g. programmers with much experience may be a necessary
criterion for using some of the models (the aforesaid field attains a value of 100 in
such a case), while they might only be a recommendation for others (field value – 50).
To sum up, this field enhances the sensitivity of the system, hence upgrading the
mechanism of concluding the process.

8. Algorithm for selecting a model

The algorithm for selecting a model is a heuristic ranking algorithm (figure 3). The
outcome of its operation is a list of models together with the ascribed score, in order
from the highest to the lowest scoring model.

The principles of model selection are stored in the Conditions table. Employing
a chosen condition to answer a given question links the criteria to the model. The ini-
tial list of criteria included: software size, membership of a life-critical system, soft-
ware purpose, clarity of requirements, main system function, project duration, finan-
cial resources, team experience, user experience, user contact. Calculating the score
for models which were not excluded from the set of possible solutions is according to
a defined equation. Two cases were taken into consideration: the existence of, or the
non-existence of a link between a condition and the parameters of a given model. If
a link exists, the score is calculated using:

10021
sppwkwmm ijij ⋅

+
+= − (1)

where:
mij – the value of the model_points field in the Models table, which includes the

previous sum of points collected by model i in stages 1, 2, ..., j –1 of the selection
process,

kw – the value of criterion_weight in the Criteria table, which stands for the
weight of the criterion to which a given condition is referring,

pw – the value of question_weight in the Question table, which stands for the
weight, or in other words, the importance of the question,

sp – the value of fulfillment_level_parameter in the Parameters table.

G. HOŁODNIK-JANCZURA, I. GOLIŃSKA74

Reset model scores

START

Download the first question with answers from the
database

Display the downloaded question with answers

User’s choice of answer

Download the condition for the chosen answer

Do you want to reject the
model for the downloaded

condition?

Set the result of the
downloaded model to 1

Calculate the points and add them
to the chosen model

Is there another condition for the
chosen answer?

Does the answer have another
question?

Download another question with answers
from the database

View result

NO

NO

YES

STOP

Download the model with parameters

Do the model parameters
fulfill thecondition ?

YES

NO

YES

Is there another model?

NO

NO YES

Does the answer fulfill any available
conditions?

NO

YES

YES

Is the criteria parametrized
for the downloaded model?

YES

NO

Does the model filfill the
condition?

Does the condition meet a
define criteria?

YES
NO

YES NO

Calculate the points without the
weight of the criteria and add

them to the chosen model

Fig. 3. Algorithm for selecting an SDLC model – a flowchart

Decision support system for choosing model for a software development life cycle 75

Points are assigned to those models whose parameters fulfilled the conditions of
individual answers to the given questions; their number depends on the average
weighted by the “weights” of questions, and the values according to each criterion
ascribed to a given condition, diminished by the value of the fulfillment_level _pa-
rameter parameter.

In the case of the non-existence of a link, which is true if the given condition can-
not be connected to any criteria and the fk_criteria_id in the Conditions table is empty,
points are calculated according to the following equation:

pwmm ijij += −1 (2)

where:
mij – the value of the model_points field in the Models table, which includes the

previous sum of points collected by model i in stages 1, 2, ..., j – 1 of the selection
process,

pw – the value of question_weight in the Question table, which stands for the
weight, or in other words, the importance of the question.

9. Presentation of results

Once the answers have been given, the application shows the results on the screen
(figure 4). The list presents all the models entered into the Models table, together with

Fig.4. The “Results” window

G. HOŁODNIK-JANCZURA, I. GOLIŃSKA76

the score they were given by the algorithm. The best SDLC model for a given project is
supposed to be the one with the highest score. All the other models are presented with
their scores, so that the choice of the highest-ranked model is not imposed on users. On
the contrary, they can make their final decision upon examining the whole decision-
making path and analyzing the full model characteristics presented by the system.

The “Decision-making path” window (figure 5.) shows all the answers selected by
the user. The upper row gives the model’s number, the lower row shows how the total
score for each model changed according to how the questions had been answered.
Thanks to this, users can track the ways in which their answers influenced the final
score of a model, both on the spot and after obtaining the results.

Fig. 5. The “Decision-making path” window

The result of implementing this algorithm cannot be considered as entirely objec-
tive, for it is highly reliant on the weights ascribed to the individual criteria, as well as
the questions. In addition, scores are assigned to the models according to the level of
criterion fulfillment. All these values are subjective and can vary depending on the
priorities of the decision-maker, who has the power of setting them according to his
preferences.

10. Summary

Selecting an SDLC model can be compared in many ways to the specification of
user requirements; the more data gathered and examined, the higher the chances for

Decision support system for choosing model for a software development life cycle 77

successful completion of the project. Just as the specifications of user requirements are
vital in the stages of design and computer system development, so can the knowledge
and regulations which constitute the basis for SDLC model selection determine the
success or failure of a given project.

To sum up, selecting an appropriate SDLC model is a complex and a challenging
task, which requires not only broad theoretical knowledge, but also consultation with
experienced expert managers. Therefore, the computer application presented should be
perceived as the first step towards building a system that could be applied in practice;
the possibilities for its development depend on the activity of its users. The flexible
construction and permanent parameterization method used in the system makes it
a multi-tasking tool for decision support, which not only gives decision-makers the
opportunity to learn, but also allows them to participate in a system’s development.

References

[1] BIELECKI W.T., Informatyzacja zarządzania, Państwowe Wydawnictwo Ekonomiczne, Warszawa,
2001.

[2] BOEHM B.W., A Spiral Model of Software Development and Enhancement, IEEE Computer, Maj
1988, 61–72.

[3] CADLE J., DONALD Y., Inżynieria oprogramowania, Zarządzanie procesem tworzenia systemów
informacyjnych, Wydawnictwo Naukowo-Techniczne, Warszawa, 2004.

[4] FLASIŃSKI M., Zarządzanie projektami informatycznymi, PWN, Warszawa, 2006.
[5] KISIELNICKI J., SROKA H., Systemy informatyczne biznesu, Agencja Wydawnicza „PLACET”, War-

szawa, 2001.
[6] KOLBUSZ E., OLEJNICZAK W., SZYJEWSKI Z., Inżynieria systemów informatycznych w e- gospodarce,

Polskie Wydawnictwo Ekonomiczne, Warszawa, 2005.
[7] PRESSMAN R.S., Inżynieria oprogramowania. Praktyczne podejście do inżynierii oprogramowania,

WNT, Warszawa, 2004.
[8] SOMMERVILLE I., Inżynieria oprogramowania, WNT, Warszawa, 2003.
[9] www.infog.com/articles/interview-Johnson-Standish-CHAOS

